Exercise -15.1
Question 1- In a cricket math, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
Answer - Number of times the batswoman hits a boundary = 6
Question 1- In a cricket math, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
Answer - Number of times the batswoman hits a boundary = 6
Total number of balls played = 30
∴ Number of times that the batswoman does not hit a boundary = 30 − 6 = 24

Question 2- 1500 families with 2 children were selected randomly, and the following data were recorded:
Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.'
Answer - Total number of families = 475 + 814 + 211
= 1500
(i) Number of families having 2 girls = 475

(ii) Number of families having 1 girl = 814

(iii) Number of families having no girl = 211


Therefore, the sum of all these probabilities is 1.
Question 3- In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.
Answer - Number of students born in the month of August = 6
Total number of students = 40


Question 4- Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:
Answer - Number of times 2 heads come up = 72
Total number of times the coins were tossed = 200

Question 5- An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:
Suppose a family is chosen, find the probability that the family chosen is
(i) earning Rs 10000 − 13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000 − 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.
Answer - Number of total families surveyed = 10 + 160 + 25 + 0 + 0 + 305 + 27 + 2 + 1 + 535 + 29 + 1 + 2 + 469 + 59 + 25 + 1 + 579 + 82 + 88 = 2400
(i) Number of families earning Rs 10000 − 13000 per month and owning exactly 2 vehicles = 29
Hence, required probability,
(ii) Number of families earning Rs 16000 or more per month and owning exactly 1 vehicle = 579
Hence, required probability,
(iii) Number of families earning less than Rs 7000 per month and does not own any vehicle = 10
Hence, required probability,
(iv) Number of families earning Rs 13000 − 16000 per month and owning more than 2 vehicles = 25
Hence, required probability,
(v) Number of families owning not more than 1 vehicle = 10 + 160 + 0 + 305 + 1 + 535 + 2 + 469 + 1 + 579 = 2062
Hence, required probability,
Question 6- A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0 − 20, 20 − 30… 60 − 70, 70 − 100. Then she formed the following table:
(i) Find the probability that a student obtained less than 20 % in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.
Answer - Totalnumber of students = 90
(i) Number of students getting less than 20 % marks in the test = 7
Hence, required probability,
(ii) Number of students obtaining marks 60 or above = 15 + 8 = 23
Hence, required probability,
Question 7- To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.
(i) likes statistics, (ii) does not like it
Answer - Total number of students = 135 + 65 = 200
(i) Number of students liking statistics = 135

(ii) Number of students who do not like statistics = 65

Question 8- The distance (in km) of 40 engineers from their residence to their place of work were found as follows.
What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within
km from her place of work?
Answer - (i) Total number of engineers = 40
Number of engineers living less than 7 km from their place of work = 9
Hence, required probability that an engineer lives less than 7 km from her place of work,
(ii) Number of engineers living more than or equal to 7 km from their place of work = 40 − 9 = 31
Hence, required probability that an engineer lives more than or equal to 7 km from her place of work,
(iii) Number of engineers living within
km from her place of work = 0
Hence, required probability that an engineer lives within
km from her place of work, P = 0
Question 9- Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):
Number of girls in a family
|
2
|
1
|
0
|
Number of families
|
475
|
814
|
211
|
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.'
Answer - Total number of families = 475 + 814 + 211
= 1500
(i) Number of families having 2 girls = 475

(ii) Number of families having 1 girl = 814

(iii) Number of families having no girl = 211


Therefore, the sum of all these probabilities is 1.
Question 3- In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.
Answer - Number of students born in the month of August = 6
Total number of students = 40


Question 4- Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:
- Outcome3 heads2 heads1 headNo headFrequency23727728
Answer - Number of times 2 heads come up = 72
Total number of times the coins were tossed = 200

Question 5- An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:
Monthly income
(in Rs)
|
Vehicles per family
| |||
0
|
1
|
2
|
Above 2
| |
Less than 7000
|
10
|
160
|
25
|
0
|
7000 − 10000
|
0
|
305
|
27
|
2
|
10000 − 13000
|
1
|
535
|
29
|
1
|
13000 − 16000
|
2
|
469
|
59
|
25
|
16000 or more
|
1
|
579
|
82
|
88
|
(i) earning Rs 10000 − 13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000 − 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.
Answer - Number of total families surveyed = 10 + 160 + 25 + 0 + 0 + 305 + 27 + 2 + 1 + 535 + 29 + 1 + 2 + 469 + 59 + 25 + 1 + 579 + 82 + 88 = 2400
(i) Number of families earning Rs 10000 − 13000 per month and owning exactly 2 vehicles = 29
Hence, required probability,

(ii) Number of families earning Rs 16000 or more per month and owning exactly 1 vehicle = 579
Hence, required probability,

(iii) Number of families earning less than Rs 7000 per month and does not own any vehicle = 10
Hence, required probability,

(iv) Number of families earning Rs 13000 − 16000 per month and owning more than 2 vehicles = 25
Hence, required probability,

(v) Number of families owning not more than 1 vehicle = 10 + 160 + 0 + 305 + 1 + 535 + 2 + 469 + 1 + 579 = 2062
Hence, required probability,

Question 6- A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0 − 20, 20 − 30… 60 − 70, 70 − 100. Then she formed the following table:
Marks
|
Number of student
|
0 − 20
20 − 30
30 − 40
40 − 50
50 − 60
60 − 70
70 − above
|
7
10
10
20
20
15
8
|
Total
|
90
|
(ii) Find the probability that a student obtained marks 60 or above.
Answer - Totalnumber of students = 90
(i) Number of students getting less than 20 % marks in the test = 7
Hence, required probability,

(ii) Number of students obtaining marks 60 or above = 15 + 8 = 23
Hence, required probability,

Question 7- To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.
- OpinionNumber of studentslikedislike13565
(i) likes statistics, (ii) does not like it
Answer - Total number of students = 135 + 65 = 200
(i) Number of students liking statistics = 135

(ii) Number of students who do not like statistics = 65

Question 8- The distance (in km) of 40 engineers from their residence to their place of work were found as follows.
5
|
3
|
10
|
20
|
25
|
11
|
13
|
7
|
12
|
31
|
19
|
10
|
12
|
17
|
18
|
11
|
32
|
17
|
16
|
2
|
7
|
9
|
7
|
8
|
3
|
5
|
12
|
15
|
18
|
3
|
12
|
14
|
2
|
9
|
6
|
15
|
15
|
7
|
6
|
12
|
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within

Answer - (i) Total number of engineers = 40
Number of engineers living less than 7 km from their place of work = 9
Hence, required probability that an engineer lives less than 7 km from her place of work,

(ii) Number of engineers living more than or equal to 7 km from their place of work = 40 − 9 = 31
Hence, required probability that an engineer lives more than or equal to 7 km from her place of work,

(iii) Number of engineers living within

Hence, required probability that an engineer lives within

Question 9- Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):
4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Answer - Number of total bags = 11
Number of bags containing more than 5 kg of flour = 7
Hence, required probability,
Question 10-
Concentration of SO2 (in ppm)
|
Number of days (frequency )
|
0.00 − 0.04
|
4
|
0.04 − 0.08
|
9
|
0.08 − 0.12
|
9
|
0.12 − 0.16
|
2
|
0.16 − 0.20
|
4
|
0.20 − 0.24
|
2
|
Total
|
30
|
The above frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 − 0.16 on any of these days.
Answer - Number days for which the concentration of sulphur dioxide was in the interval of 0.12 − 0.16 = 2
Total number of days = 30
Hence, required probability, 

Question 11-
Blood group
|
Number of students
|
A
|
9
|
B
|
6
|
AB
|
3
|
O
|
12
|
Total
|
30
|
The above frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.
Answer - Number of students having blood group AB = 3
Total number of students = 30
Hence, required probability, 

No comments:
Post a Comment